1.	((i)	portable	[1]
		(ii)	oxygen or air	[1]
	(b)		both have four outer or valency electrons need to share four more or need four more to complete energy level NOT four bonds	[1] [1]
		(ii)	hard brittle high melting or boiling point poor conductor of electricity or semi-conductor any TWO NOT insoluble in water, NOT tough NOT appearance	[2]
		(iii)	germanium or carbon NOT graphite	[1]
	(c)		correctly balanced	[1]
		(ii)	lost oxygen or decrease in oxidation number NOT accepts electrons unless valid explanation	[1]
		(iii)	4 oxygen atoms around 1 silicon atom 2 silicon atoms around 1 oxygen tetrahedral or diagram that looks tetrahedral If some wrong chemistry, such as ionic MAX 2/3	[1] [1] [1]
				1()141 = 112

2	(a)		drop small tube in acid/loosen string/idea of mixing zinc and acid/let go of cotton ALLOW: cut the string NOT: heat (the acid) NOT: pull the string	[1]
	(b)	(i) (ii) (iii)	correct plotting including 0-0 point (– 1 per omission or error) best curve drawn and to go through origin no more gas produced/reaction finished;	[2] [1]
		()	all zinc reacted/used up	[2]
	(c)		graph drawn with faster initial rate and starting at 0-0; ALLOW: straight line as initial rate ends up at 55 cm ³	[2]
	/ ₋ 1\	(:)	·	
	(d)	(i) (ii) (iii)	2 (HC I) zinc chloride 136 IGNORE units	[1] [1] [1]
	(e)		substance containing only one type of atom/substance which cannot be broken down to any other substance by <u>chemical means</u> NOT 'can't be split' alone NOT is a pure substance	[1]

Question	Answer	Mai	rks
3(a)(i)	$NH_3 + HCl \rightarrow NH_4Cl;$		1
(a)(ii)	di		1
(a)(iii)	solid forms at: A; explanation: ammonia molecules/particles have a smaller mass; (and so) move/diffuse faster;	1 2	3
(a)(iv)	M1 solid forms in less time/faster/quicker; M2 particles/molecules have more energy; M3 (and so) move faster/diffuse faster;	1 1 1	3
(b)(i)	test: add sodium hydroxide (solution and warm); result: test gas/ammonia with (red) litmus/Universal Indicator/pH paper; indicator turns blue/ammonia produced;	1 2	3
(b)(ii)	test: add silver nitrate (solution); result: add (dilute) nitric acid; white precipitate;	1 2	3

Question	Answer	Marks
(c)(i)	cov	1
(c)(ii)	 M1 one shared pair of electrons between each N and H; M2 one shared pair of electrons between the N atoms; M3 one lone pair on each N and no additional electrons anywhere; 	3 1 1 1
(d)(i)		1
(d)(ii)	proteins are made from more than two monomers; OR nylon is made from 1 or 2 monomers (only);	1
(d)(iii)	acids;	1
(e)	H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1

Question	Answer	Marks
4(a)	the number of e gained or lost = numerical value of oxidation state;	1
	 any two from: Na to Al (Si) lose e; (Si) P to Cl gain e; Si gains and loses e /Ar neither gains nor loses e; 	2
(b)	M1 positive ions/cations/metallic ions; the (correct) particles named in M1 are arranged in a lattice/rows/layers; sea of electrons/delocalised electrons;	3
(c)	they have mobile electrons;	1
(d)	chlori	1
(e)	strong covalent bonds ; in a giant lattice/macromolecule/giant (structure);	2

Question	Answer	Marks
(f)	 any two from: sodium chloride is ionic and PCl₃ is covalent; ionic bonds are strong and intermolecular forces are weak; PCl₃ reacts with water and NaCl does not; 	2
(g)	MgO will react with/dissolve in/neutralise hydrochloric acid/acid/acid oxide; if amphoteric, MgO will react with or dissolve in or neutralise hydrochloric acid or acid or acid oxide and MgO will react with dissolve in or neutralise sodium hydroxide or alkali or base or basic oxide; MgO will not react with or dissolve in or neutralise sodium hydroxide or alkali or base or basic oxide = [2]	2
(h)	xx x x y 2+	3